
Lessons Learned Don’t develop for the sake of developing!

The Case for Custom Software Development
HGSimpleCorpusNetwork – A Network Analysis Toolbox for (Historical)
Corpora

he
id

el
gr

am
.u

ni
-h

ei
de

lb
er

g.
de

Beatrix Busse @BeatrixBusse / Ingo Kleiber @KleiberIngo

HeidelGram Project

The HeidelGram project has two interrelated objectives:
• Compiling and analyzing a corpus of historical English grammar books (1550 – 1900)

• Combining corpus-based historical linguistics and the analysis of networks

(cf. Busse, Gather, Kleiber 2018, 2019, forth; Busse and Kleiber 2018)

So far:
• Pilot-corpus of 19th-century grammar books (approx. 3m words)

• Analysis of the references made to grammarians/grammars in these grammar books

• Identification of generalizable Verbal Hygiene (Cameron [1995] 2012) patterns

• Development of a specialized software toolkit for the project

Works Cited
• Anthony, Laurence. 2013. “A Critical Look at Software Tools in Corpus Linguistics.” Linguistic Research 30 (2): 141–61.
• Cameron, Deborah. (1995) 2012. Verbal Hygiene. The politics of language. London: Routledge.
• Harpole, Alice. 2017. “Sustainable Scientific Software Development.” europython 2017, Rimini, July 12.

https://ep2017.europython.eu/conference/talks/sustainable-scientific-software-development.
• Mason, Oliver. 2000. Programming and Corpus Linguistics. Edinburgh: Edinburgh University Press.
• Mason, Oliver. 2008. “Developing Software for Corpus Research.” International Journal of English Studies 8 (1): 141–56.
• Murray, Gerald. 1847. The Reformed Grammar or Philosophical Test of English Composition: Written for the Assistance of Teachers and Satisfaction of Learners. London: Darton

and Co. Holborn Hill.

• Busse, Beatrix, and Ingo Kleiber. 2018. “A Network of Evaluative Terms in 19th-Century British Grammars: Methodological Challenges and Practical Solutions.” ICAME 39, Tampere,
Finnland, 2018.

• Busse, Beatrix, Kirsten Gather, and Ingo Kleiber. 2018. “Assessing the Connections between English Grammarians of the Nineteenth Century: A Corpus-Based Network Analysis.”
In Grammar and Corpora 2016, edited by Eric Fuß, Marek Konopka, Beata Trawiński, and Ulrich H. Waßner, 435–42. Heidelberg: Heidelberg University Publishing.

• Busse, Beatrix, Ingo Kleiber, and Kirsten Gather. 2019. “Paradigm Shifts in 19th-Century British Grammar Writing: A Network of Texts and Authors.” In Norms and Conventions in the
History of English, edited by Birte Bös and Claudia Claridge, 49–71. Current Issues in Linguistic Theory. Amsterdam: John Benjamins.

• Busse, Beatrix, Kirsten Gather, and Ingo Kleiber. forth. “A Corpus-Based Analysis of Grammarians’ References in 19th-Century British Grammars.” In Variation in Time and Space:
Observing the World through Corpora, edited by Anna Cermakova and Markéta Malá. Diskursmuster - Discourse Patterns 20. Berlin: De Gruyter.

The Role of Software in Linguistic Research
“The functionality offered by software tools largely dictates what corpus linguistics research methods are available to a researcher.” and “… differences
in the way tools are designed will have an impact on almost all corpus analyses.” (Anthony 2013: 141, 151)

“[Relying on existing programs] not only severely limits the possibilities for exploring corpus data, but also introduces unknown factors into the
research, as it is not always obvious how the software will handle certain features of language.” (Mason 2008: 155)

We need to consider software as a key part of research which is as important as theory, methodology, and data!

• Reproducibility

• Availability (Will the software be available in 5/10/20 years?)

• Transparency (e.g. models, measures, pre-/post-processing)

• Flexibility (cf. Mason 2000: 4)

• Compatibility (e.g. standard and open formats)

• “Pipelinability” (Will the software work as part of a data-
analysis pipeline?)

• Usability + Sensible defaults

• Openness (Will there be licensing issues?)

• …

Requirements for Academic Software
• We don’t want to be limited by existing tools and approaches
• We want to be able to solve complex tasks highly specific to our research
• We want to be able to fully understand the tools and the underlying

models

Project-Specific Software

HGSimpleCorpusNetwork – Requirement-Driven Agile Development

General Requirements: The toolbox needs to …
1. grow and be adapted as the project grows
2. be able to handle textual data from a variety of periods (Historical!)
3. be able to handle (and mitigate) uncleaned OCR data
4. be able to work as part of an automized analysis pipeline
5. be able to interface with network/graph analysis toolkits such as Gephi

Specific Required Functionalities (Example) Lead to: FuzzySearch

Generate document-term matrices based on sets of search terms and OCR-based corpora.
Reason: We want to analyze which grammarians (and grammars) are referenced where (by whom) in a corpus of grammar books.

(cf. Busse, Gather, Kleiber 2019)

Challenges: (1) Uncleaned OCR data is not well-structured and contains spelling errors. (2) The mere existence of a token (e.g.

Crombie) does not necessarily entail a reference.

• Software decay/entropy constant refactoring (expensive, time-consuming)
• External dependencies (e.g. APIs) are a risk e.g. UcrelSemTaggerSoapService going down
• Don’t reinvent the wheel, especially if good models and approaches are available (e.g. tokenization, string

matching)
• Modeling parts of the theory in software leads to new insights into both theory and analysis
• Developing project-specific software forces you to have extremely good knowledge of your data and methodology
• Rapidly prototyping new (computational) approaches to analysis fosters creativity (this requires you to have a

modular framework and good pipelines)

• Open Source Software (OSS) + DOI + Archive repository
• Strong version control (e.g. Git) + branching documentation of the process
• Testing / Test-Driven Development (Unit Tests, Integration Tests, Regression

Tests)
• Run simulations and test against (reasonable) ranges and means testing

fuzzy returns
• Continuous integration + Sanity/coverage checks before pushing to remote
• Good (and complete) documentation (instructions, examples, self-documenting

code, automated API documentation)
• Reproducible runtimes (e.g. Docker)
• Limited reliance on external (and specifically proprietary) modules/libraries

Best Practices

	Foliennummer 1

