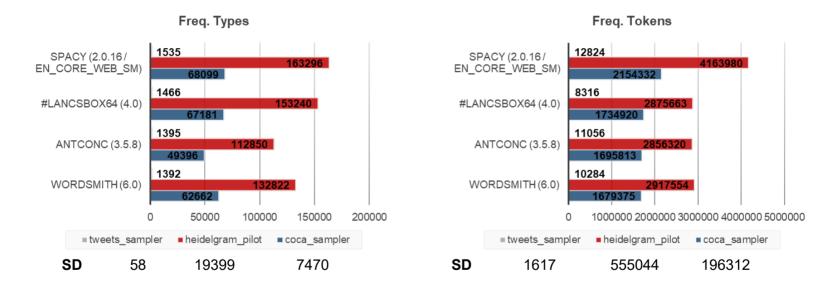
11.06.2019

The Case for Custom Software Development The Example of *HGSimpleCorpusNetwork*

Beatrix Busse, Ingo Kleiber

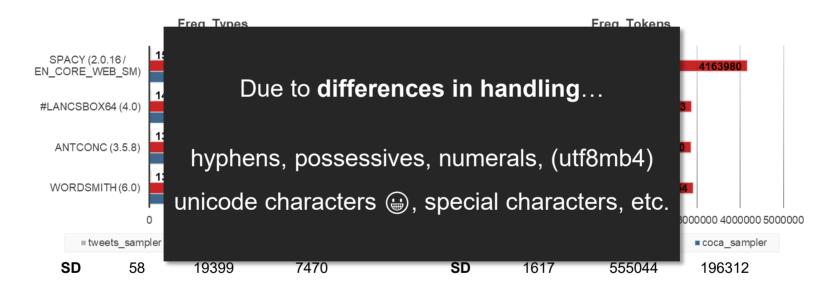
ICAME40 / Neuchâtel 2019 / Beatrix Busse & Ingo Kleiber

Agenda


- 1. The Role of Software in Linguistic Research
- 2. Requirements for Academic Software
- 3. The Need for Project-Specific Software
- 4. HeidelGram
 - (1) Project Overview
 - (2) HGSimpleCorpusNetwork
- 5. Do You Need to Develop Project-Specific Software?
- 6. Best Practices

The Role of Software in Linguistic Research

Three **corpora** and four common **toolkits** (frequency analysis)



- → Default settings for all toolkits
- → No efforts were made to mitigate differences (e.g. encoding or adjusting delimiters)

The Role of Software in Linguistic Research

Three corpora and four common toolkits (frequency analysis)

- → Default settings for all toolkits
- → No efforts were made to mitigate differences (e.g. encoding or adjusting delimiters)

The Role of Software in Linguistic Research

"The functionality offered by software tools largely dictates what corpus linguistics research methods are available to a researcher." **and** "... differences in the way tools are designed will have an impact on almost all corpus analyses." (Anthony 2013: 141, 151)

> We need to consider software as a key part of research which is as important as theory, methodology, and data.

Anthony's (2013: 158f.) Proposal

"[A] next generation of corpus tools that are built in an open-source and modular fashion, and are developed as a community effort."

Requirements for Academic Software

Academic software \rightarrow Part of the research process

- Reproducibility
- Availability (Will the software be available in 5/10/20 years?)
- Transparency (e.g. models, measures, pre-/post-processing)
- Flexibility (cf. Mason 2000: 4)
- Compatibility (e.g. standard and open formats)
- "Pipelinability" (Will the software work as part of a data-analysis pipeline?)
- Usability + Sensible defaults
- Openness (Will there be licensing issues?)

The Need for Project-Specific Software

"[Relying on existing programs] not only severely **limits the possibilities for exploring corpus data**, but also **introduces unknown factors** into the research, as it is not always obvious how the software will handle certain features of language." (Mason 2008: 155)

• We don't want to be limited by existing tools and approaches

 \rightarrow Theory <> Tools instead of Tools \rightarrow Theory

- We want to be able to solve complex tasks highly specific to our research
- We want to be able to fully understand the tools and the underlying models

ightarrow could be solved by better/full documentation and OSS

 \rightarrow development forces us to understand all the parts

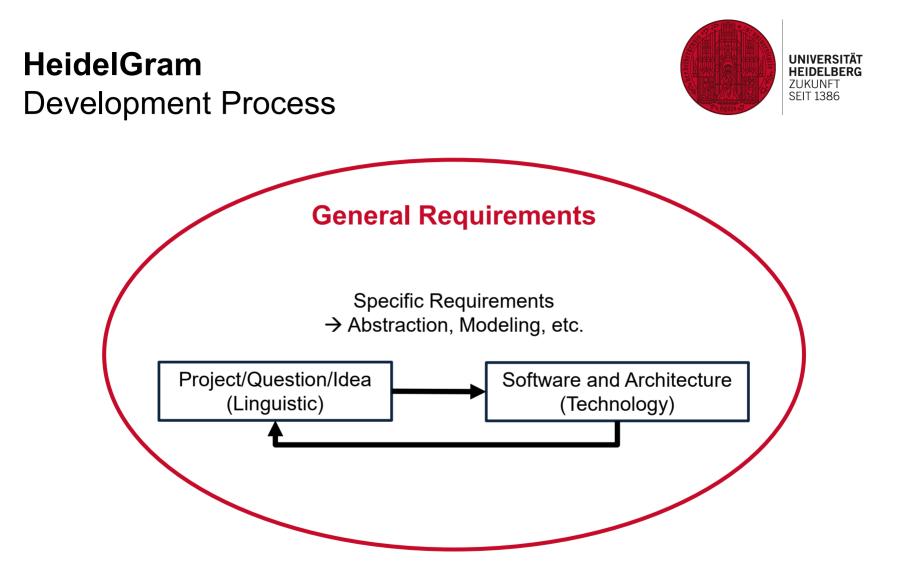
HeidelGram Project

HeidelGram

- Compiling and analyzing a corpus of historical English grammars
- Combining corpus-based historical linguistics and the analysis of networks

Research Questions (Examples)

- How do grammar writers react to other authors, and by which means do they try to influence their respective audiences?
- Where do authors position their work with respect to the prescriptive-descriptive continuum?
- What does the interplay between language norms and language usage with respect to normative grammar writing look like?
- Which fields of linguistic study and which topics are treated in grammar writing over the centuries and how do new concepts emerge while others become obsolete?


HeidelGram Project

So far ...

- Pilot-corpus of 19th-century grammar books (approx. 3m words)
- Analysis of the references made to grammarians/grammars in these grammar books (= scholarly networks → texts and authors)
- Identification of generalizable Verbal Hygiene (Cameron [1995] 2012) patterns
- Development of a specialized **software toolkit for the project**

(cf. Busse, Gather, Kleiber 2018, 2019, forth; Busse and Kleiber 2018)

HeidelGram Software: General Requirements

The toolbox needs to ...

- 1. grow and be adapted as the project grows
- 2. be able to handle textual data from a variety of periods (Historical!)
- 3. be able to handle uncleaned OCR data
- 4. be able to work as part of an automized analysis pipeline
- 5. be able to interface with network/graph analysis toolkits such as *Gephi*

HeidelGram Specific Required Functionalities

1. Generate document-term matrices based on sets of search terms and OCR-based corpora.

Reason: We want to analyze which grammarians (and grammars) are referenced where (by whom) in a corpus of grammar books. (cf. Busse, Gather, Kleiber 2019)

Challenges:

- Uncleaned OCR data is not well-structured and contains spelling errors.
- The mere existence of a token (e.g. *Crombie*) does not necessarily entail a reference.

HeidelGram Specific Required Functionalities

2. Automatically extract a set of forms which possibly correspond to a particular function (e.g. Verbal Hygiene (Cameron [1995] 2012)).

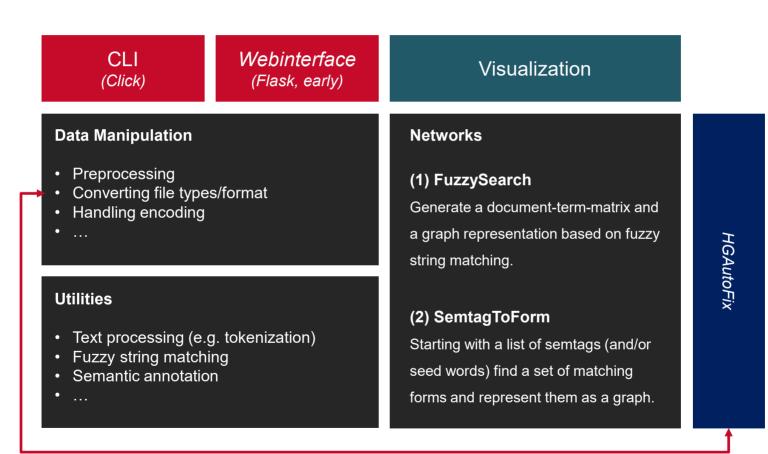
Reason: We want to find and analyze patterns of Verbal Hygiene in historical grammar books. In order to do that, we need a comprehensive set of forms and examples.

For example: "shows an unpardonable indifference to perspicuity, consistency, and common sense" (Murray 1847) (cf. Busse & Kleiber 2018)

Challenges:

- How can we identify patterns/n-grams related to a specific function?
- How can we identify (word-)forms related to a specific function which have not been previously identified as such?

HGSimpleCorpusNetwork Overview


HGSimpleCorpusNetwork is a project-specific toolbox has been developed alongside the HeidelGram project.

- Written in modern Python (3.6+)
- Both a library and a toolkit
- Optimized for modularity and flexibility
- Research- and theory-driven development
- Roughly based on a Model-View-Presenter approach
- Input data \rightarrow output data without interaction
- Currently under active development
- Open Source (current version will be published on GitHub soon)

HGSimpleCorpusNetwork

The Toolbox (as of now)

HeidelGram Specific Required Functionalities

1. Generate document-term matrices based on sets of search terms and OCR-based corpora.

Challenges:

- Uncleaned OCR data is not well-structured and contains spelling errors.
- The mere existence of a token (e.g. *Crombie*) does not necessarily entail a reference.

HGSimpleCorpusNetwork FuzzySearch

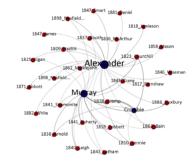
In & Out

Corpus

(containing **misreadings**)

Search Terms e.g. Crombie Murray

Alexander


Crombie ≡	Cr0mble ?
\rightarrow Three	eshold

DTM (csv)

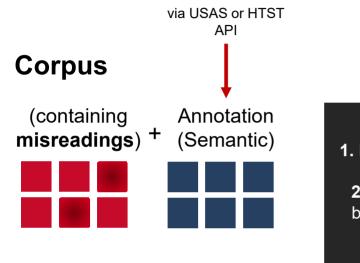
	A	В	с	D	E	F	G
	Search Term	1802_Cromb	1809_Hazlitt	1810_Lennie	1817_Earnsh	1818_Cobbe	1818_J
	Crombie	0	0	1	0	0	
3	Murray	8	4	9	0	8	
4	Alexander	7	8	5	2	0	

Graph (GEXF, GraphML)

Concordances + Confidence Levels

	search_term	search_file	match_algor	confidence	concordance	project_na
	Crombie	corpus\1810	gestalt	1	as , though in unison with Dr. Crombie 's , is at varian	network
	Crombie	corpus\1823	gestalt	1	noticed in Lowth were only four . Crombie has a list o	network
	Crombie	corpus\1823	gestalt	1	is true : but , as Dr. Crombie justly ob ' serves , '	network
	Crombie	corpus\1823	gestalt	1	been distributed , ' observes Dr. " Crombie , ' accordin	network
6	Crombie	corpus\1823	gestalt	1	Thus the distinction . adopted by Dr. Crombie . into p	network

HeidelGram Specific Required Functionalities



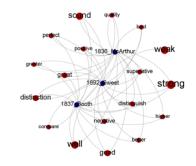
2. Automatically extract a set of forms which possibly correspond to a particular function (e.g. Verbal Hygiene (Cameron [1995] 2012)).

Challenges:

- How can we identify patterns/n-grams related to a specific function?
- How can we identify (word-)forms related to a specific function which have not been previously identified as such?

HGSimpleCorpusNetwork SemtagToForm

Semtags / Seed e.g. A5 02.02.07 greatly erred Look for seed terms
 Find forms based on the semtags
 Build a
 Word2Vec model
 Find similar forms to the ones already found


In & Out

List of Forms (for each document)

civilised sad invigorate sharp overrate deteriorate level improved defective

Graph (GEXF, GraphML)

Trained Word2Vec model

HGSimpleCorpusNetwork

Lessons Learned

- Software decay/entropy → constant refactoring (expensive, time-consuming)
- External dependencies (e.g. APIs) are a risk → e.g. UcrelSemTaggerSoapService going down
- Don't reinvent the wheel, especially if good models and approaches are available (e.g. tokenization, string matching)
- Modeling parts of the theory in software leads to new insights into both theory and analysis
- Developing project-specific software forces you to have extremely good knowledge of your data and methodology
- Rapidly prototyping new (computational) approaches to analysis fosters creativity (this requires you to have a modular framework and good pipelines)

Do You Need to Develop Project-Specific Software?

Do think about developing software if ...

- the skillset/capabilities are available to you and/or your team.
- your developer(s) have (enough) domain-specific knowledge.
- your project is big/important enough to spend the extra time and money.
- the new software potentially could benefit others as well. (= generalizability)
- the existing solutions are (persistently) intransparent and/or inaccessible.
- the existing solutions do not meet academic standards.
- the existing solutions are truly limiting your analysis.

and vice versa.

In short: *Don't develop for the sake of developing!*

Development Best Practices

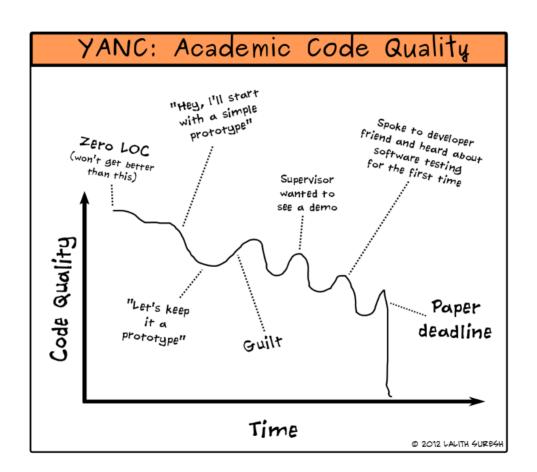
tl;dr: Carefully follow established industry standards and general best practices.

- Open Source Software (OSS) + DOI + Archive repository
- Strong version control (e.g. Git) + branching → documentation of the process
- Testing / Test-Driven Development (Unit Tests, Integration Tests, Regression Tests)
- Run **simulations** and test against (reasonable) ranges and means \rightarrow testing fuzzy returns
- Continuous integration + Sanity/coverage checks before pushing to remote
- Good (and complete) documentation (instructions, examples, self-documenting code, automated API documentation)
- Reproducible runtimes (e.g. Docker)
- Limited reliance on external (and specifically proprietary) modules/libraries

Valuable Guidelines: Software Sustainability Institute | also see Harpole 2017

HeidelGram

http://heidelgram.uni-heidelberg.de


@BeatrixBusse @KleiberIngo

A big thank you also goes to Lyuba Dimitrova who constantly fights off bugs and keeps the code tidy.

Academic Code Quality

Works Cited I

- Anthony, Laurence. 2013. "A Critical Look at Software Tools in Corpus Linguistics." *Linguistic Research* 30 (2): 141–61.
- Busse, Beatrix, and Ingo Kleiber. 2018. "A Network of Evaluative Terms in 19th-Century British Grammars: Methodological Challenges and Practical Solutions." ICAME 39, Tampere, Finnland, 2018.
- Busse, Beatrix, Kirsten Gather, and Ingo Kleiber. 2018. "Assessing the Connections between English Grammarians of the Nineteenth Century: A Corpus-Based Network Analysis." In *Grammar and Corpora 2016*, edited by Eric Fuß, Marek Konopka, Beata Trawiński, and Ulrich H. Waßner, 435–42. Heidelberg: Heidelberg University Publishing.
- Busse, Beatrix, Ingo Kleiber, and Kirsten Gather. 2019. "Paradigm Shifts in 19th-Century British Grammar Writing: A Network of Texts and Authors." In *Norms and Conventions in the History of English*, edited by Birte Bös and Claudia Claridge, 49–71. Current Issues in Linguistic Theory. Amsterdam: John Benjamins.
- Busse, Beatrix, Kirsten Gather, and Ingo Kleiber. forth. "A Corpus-Based Analysis of Grammarians' References in 19th-Century British Grammars." In *Variation in Time and Space: Observing the World through Corpora*, edited by Anna Cermakova and Markéta Malá. Diskursmuster - Discourse Patterns 20. Berlin: De Gruyter.

Works Cited II

- **Cameron**, Deborah. (1995) 2012. *Verbal Hygiene*. The politics of language. London: Routledge.
- Harpole, Alice. 2017. "Sustainable Scientific Software Development." europython 2017, Rimini, July 12.
 https://ep2017.europython.eu/conference/talks/sustainable-scientific-software-development.
- Mason, Oliver. 2000. *Programming and Corpus Linguistics*. Edinburgh: Edinburgh University Press.
- Mason, Oliver. 2008. "Developing Software for Corpus Research." International Journal of English Studies 8 (1): 141– 56.
- **Murray**, Gerald. 1847. The Reformed Grammar or Philosophical Test of English Composition: Written for the Assistance of Teachers and Satisfaction of Learners. London: Darton and Co. Holborn Hill.